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We have developed a technique that circumvents the process of elimination of secular terms �L.-Y. Chen, N.
Goldenfeld, and Y. Oono, Phys. Rev. E 54, 376 �1996�� and reproduces the uniformly valid approximations,
amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their
grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the
technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems.

DOI: 10.1103/PhysRevE.78.032104 PACS number�s�: 64.10.�h, 64.60.�i

I. INTRODUCTION

Inspired by the statistical mechanics of critical phenom-
ena and quantum field theory �1�, Chen, Goldenfeld, and
Oono �CGO� developed a new method, the renormalization
group �RG� for the asymptotic solution of differential equa-
tions �2�, henceforth referred to as the CGO renormalization
method. In statistical mechanics the renormalization group
extracts structurally stable features of systems which are in-
sensitive to details. In the asymptotic solution of differential
equations the RG eliminates nonuniformities by a resumma-
tion process. The asymptotic solutions derived in �2� were in
many cases superior to those obtained by standard multiple-
scale, Wentzel-Kramers-Brillouin �WKB�, or matched
asymptotic expansions. In some cases the complete closed
form solutions can be captured.

Despite the merit of the CGO RG and related methods
�2–4�, they rely on a process of elimination and the deriva-
tion of amplitude equations that can be unwieldy at times.
Our technique provides the same asymptotic expansions and
amplitude equations as the standard RG approach �2,4�. Its
merit lies on using a near identity transformation based on
the secular series, thus effectively circumventing the pains-
taking elimination process, of determining the eliminative
sequence �Zi�i=1

� . It exposes the underlying structure of the
RG, avoids the introduction of additional structures such as
secondary parameters �2� or the use of envelopes of families
of curves �3�, and at times directly provides an asymptotic
solution through a first integral of the amplitude equations.
The critical step is to recognize that the naive asymptotic
expansion can be rearranged so that the secular terms are
grouped into the secular series which in turn multiplies each
constant appearing in the asymptotic expansion. The naive
perturbation expansion is defined in this paper as one having
the form y=y0�A , t�+�y1�A , t�+�2y2�A , t�+¯ where A de-
notes a set of integration constants arising in the zeroth-order
solution and t a generic independent variable.

We emphasize that the technique introduced in this Brief
Report gives results identical to those of the CGO RG. This
is not surprising since it is well known from field theory that
other methods exist that provide results identical to those of
the RG.

In Sec. II we briefly describe the technique and connect it
with the literature on the renormalization group. Section III
illustrates the methodology with three nonlinear examples.

II. GENERAL INTRODUCTION TO OUR
TECHNIQUE

Applying a naive perturbation expansion to the solution of
a differential equation might lead to nonuniformities, for ex-
ample, when t�O�1 /�� resulting from a secular term in the
perturbation solution of the form �t. The CGO RG eliminates
these secular terms by replacing the constant of integration A
in the zeroth-order solution by a slowly varying amplitude
A�t� by resorting to the near-identity transformation

A = A�1 + �Z1�A,t� + �2Z2�A,t� + O��3�� , �1�

thus requiring the determination of the unknown terms Zi, i
=1,2 , . . ..

Instead, let us define the secular series as

yp = �1 + �y1p�A,t� + �2y2p�A,t� + O��3�� , �2�

where �yip�i=1
� is the sequence of secular polynomial factors

that arise in the successive particular solutions and are re-
sponsible for the secular behavior of the perturbation expan-
sion, and relate A and A�t ,�� through the near identity trans-
formation

A�t,�� = A�1 + �y1p + �2y2p + O��3�� , �3�

i.e., let A�t ,���Ayp or A�A�t ,��yp
−1 �the secular series will

be enclosed in square brackets throughout this Brief Report�.
The motivation behind the introduction of �3� to replace the
constants, will become evident in the following sections
where we investigate the asymptotic solutions to specific
nonlinear problems.

To obtain the amplitude equation we follow �2� and dif-
ferentiate A=Ayp

−1 with respect to time t. Since A is a con-
stant this step leads to a first-order ordinary differential equa-
tion for the slowly varying amplitude, A

dA
dt

= Ayp
−1dyp

dt
. �4�

Substituting the secular series expansion �2� for yp in the
above expression and rearranging leads to the following
form of the amplitude equation:*kirkinis@amath.washington.edu
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1

A
dA
dt

= �
dy1p

dt
+ �2�dy2p

dt
− y1p

dy1p

dt
	

+ �3�dy3p

dt
− y1p

dy2p

dt
− y2p

dy1p

dt
+ y1p

2 dy1p

dt
	 + O��4� .

�5�

The above equation is central to most RG calculations and
forms the penultimate step prior to establishing the RG
asymptotic expansion. In this paper we also show that by
direct integration with respect to the time variable one ob-
tains a first integral of the amplitude Eq. �5� in the form

ln A = ln A�0� + �y1p + �2�y2p −
y1p

2

2
	

+ �3�y3p − y1py2p +
y1p

3

3
	 + O��4� . �6�

At this point we must emphasize another major difference
with the CGO RG: Here the quantities in �5� and �6� depend
on the constant A. Thus, it is necessary to substitute A
=Ayp

−1 in the above expressions to obtain the explicit depen-
dence on the amplitude A. This final step is not required by
the CGO RG.

The solution technique introduced in this Brief Report
commences with �6�. In certain cases it gives the asymptotic
solution directly. This is the case for a linear singularly per-
turbed differential equation but also in those cases where the
nonlinearity plays the role of a restoring force. In the latter
case, reverting to suitable curvilinear coordinates �see the
third example of Sec. III� the first integral directly provides
the asymptotic solution �relations �21�–�24� of this Brief Re-
port and Refs. �5–7��. In general one needs to resort to the
amplitude equation �5� and this is reflected in the solution
process employed in the first two examples of Sec. III. In
either case the only information needed in order to construct
the amplitude Eq. �5� or its first integral �6� are the particular
solutions of the hierarchy of equations.

III. ILLUSTRATIVE NONLINEAR EXAMPLES

A. Nonlinear boundary-layer problem

Consider the nonlinear equation

�
d2y

dx2 + 2
dy

dx
+ y2 = 0, y�0� = 0, y�1� = 0, � → 0 + .

�7�

As there is a boundary layer at the origin we introduce
stretched coordinates X=x /�, y�x�=Y�X�, substitute into �7�
and expand the resulting equation Y�+2Y�=−�Y2 in a naive
perturbation series Y =Y0+�Y1+�2Y2+¯ which leads to the
hierarchy of linear equations

Y0� + 2Y0� = 0, Y1� + 2Y1� = − Y0
2, Y2� + 2Y2� = − 2Y0Y1, . . . ,

and the corresponding particular solutions Yk for k�1,

Y0 = A + Be−2X,

Y1 = − 1
2A2X + ABXe−2X − 1

8B2e−4X,

Y2 = − 1
4A3X + 1

4A3X2 + 1
4A2B�X2 + X�e−2X

+ �− 5
32AB2 − 1

4B2AX�e−4X + 1
96B3e−6X. �8�

The main idea conveyed in this Brief Report results from the
observation that the naive perturbation expansion can be re-
expressed in the form

Y = A
1 − �
1

2
AX + �2�−

1

4
A2X +

1

4
A2X2	 + O��3��

+ B
1 + �AX + �2A2

4
�X2 + X� + O��3��e−2X

− �
1

8
B2�1 + �AX + O��2��2e−4X

+ �2�−
5

32
A
1 − �

1

2
AX + O��2��

�B2�1 + �AX + O��2��2e−4X

+
1

96
B3�1 + �AX + O��2��3e−6X	 + O��4� , �9�

where the expressions in the square brackets are the secular
series yAp and yBp; apparently, all the incoherent secular
terms in �8� have been rearranged and grouped into the or-
derly expressions in the square brackets that appear in �9�.
The reader may verify that upon expanding the square brack-
ets in �9� one can recover all the secular terms of �8�. Thus,
defining the slowly varying amplitudes

A = A
1 − �
1

2
AX + �2�−

1

4
A2X +

1

4
A2X2	 + O��3�� ,

�10�

B = B
1 + �AX + �2A2

4
�X2 + X� + O��3�� , �11�

substituting into �9� and reverting to the original variable x
leads to the following asymptotic expansion:

y�x;�� = A + Be−2x/� − �
1

8
�Be−2�x/���2

+ �2�−
5

32
A�Be−2�x/���2 +

1

96
�Be−2�x/���3	 + O��3� .

�12�

It remains to express the amplitudes A and B elegantly,
rather than in their awkward form �10� and �11�: Calculate
the cumulants of the sequence �yip�i=1

� as in Sec. II and sub-
stitute into �6� to obtain the algebraic relations

ln A�X� = ln A�0� − �
1

2
AX + �2A2

8
�X − 2X2� + O��3� ,
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ln B�X� = ln B�0� + �AX + �21

4
A2�X − X2� + O��3� .

Differentiating with respect to the stretched variable X, and
using the identity A=A�1+� 1

2AX+O��2�� �i.e., inverting
�10�� leads to the pair of �weakly� coupled differential equa-
tions

1

A
dA
dX

= − �
1

2
A − �21

4
A2 + O��3� , �13�

1

B
dB
dX

= �A + �21

4
A2 + O��3� , �14�

which determine the amplitudes that appear in expansion
�12�. The solution of �13� plays the role of the outer expan-
sion, most familiar from the method of matched asymptotic
expansions. A in �13� can be obtained termwise as a function
of X by a regular perturbation technique, while B in �14�
follows by solving a linear equation. Note that the above
equations are identical to those derived with the CGO renor-
malization approach �6� employing the near-identity transfor-
mation �1�.

At this point we would like to emphasize that even though
the observation that led to the formation of Eq. �9� requires a
certain degree of familiarity with the problem at hand, once
the significance of this step is realized by the reader, it does
not need to be performed for the solution of other problems.
Thus, one only needs to identify the secular terms that mul-
tiply the fundamental set of solutions of the zeroth-order
equation �here these were the functions 1 and e−2X�, form the
secular series and then collect all the nonsecular terms into
an expression of the form �12�. The remaining secular terms
appearing in the hierarchy �8� �i.e., those multiplying e−4X,
e−6X, etc.� need not be considered further as they are just a
by-product of expanding the expressions appearing in �9�.

B. Van der Pol oscillator

We consider the problem introduced by Van der Pol,

ÿ + y = �ẏ�1 − y2�, y�0� = 1, ẏ�0� = 0, � → 0 + .

�15�

We expand the solution in a power series of �y=y0+�y1
+�2y2+¯ that leads to a hierarchy of equations

ÿ0 + y0 = 0, ÿ1 + y1 = ẏ0�1 − y0
2� ,

ÿ2 + y2 = ẏ1�1 − y0
2� − 2y0y1ẏ0,

ÿ3 + y3 = ẏ2�1 − y0
2� − 2y0y1ẏ1 − ẏ0�2y0y2 + y1

2� ,

and the corresponding particular solutions

y0 = Aeit + A*e−it,

y1 =
1

2
A�1 − �A�2�teit +

i

8
A3e3it + c.c.,

y2 = 1
8A�1 − �A�2��1 − 3�A�2�t2eit − 1

16 iA�2 − 8�A�2 + 7�A�4�teit

− 3
16 iA3��A�2 − 1�te3it − 1

64A3��A�2 + 2�e3it − 5
192A5e5it

+ c.c.,

y3 = − 1
48A�− 27�A�4 + 15�A�6 − 1 + 13�A�2�t3eit + 1

32 iA�21�A�6

+ 18�A�2 − 2 − 37�A�4�t2eit − 1
128A�A�2�− 70�A�2

+ 32 + 37�A�4�teit + 3
64 iA3�− 8�A�2 + 3 + 5�A�4�t2e3it

+ 1
128A3�A�2�26�A�2 − 23�te3it + 1

512 iA3�29�A�4 − 42�A�2

+ 4�e3it + 25
384A5��A�2 − 1�te5it − 5

4608 iA5�14 + 3�A�2�e5it

− 7
1152 iA7e7it + c.c.. �16�

Despite the complexity of the above particular solutions,
with a little thought it can be seen that the incoherent secular
terms can be collected into secular series expressions so that
the naive perturbation expansion can be written in the illu-
minating form

y = Aeit + �
i

8
A3e3it − �2� 1

64
A3��A�2 + 2�e3it +

5

192
A5e5it	

+ �3� 1

512
iA3�29�A�4 − 42�A�2 + 4�e3it

−
5

4608
iA5�14 + 3�A�2�e5it −

7

1152
iA7e7it	 + c.c., �17�

where

A = A�1 + � 1
2 �1 − �A�2�t + �2 1

8 �1 − �A�2��1 − 3�A�2�t2

− �2 1
16 i�2 − 8�A�2 + 7�A�4�t + O��3�� , �18�

and the secular series yp is the post factor in the square
brackets of the right-hand side of �18�. The reader may verify
that upon substitution of A into �17� one recovers all the
secular terms in the hierarchy �16�. It only remains to find a
suitable expression for the slowly varying amplitude A. To
this end, we calculate the cumulants of the sequence �yip�i=1

�

and substitute into the algebraic relation �6� for A. Differen-
tiating with respect to time t and applying the near-identity
transformation A=Ayp

−1 �i.e., the inverse of �18�� leads to the
amplitude equation

1

A
dA
dt

= �
1

2
�1 − �A�2� − �2 1

16
i�7�A�4 − 8�A�2 + 2�

− �3 1

128
�A�2�32 − 70�A�2 + 37�A�4� + O��4� .

A solution to such an equation can be obtained by standard
techniques, first reverting to the time scale �=�t and plane
polar coordinates and solving the resulting equations using a
regular perturbation method. Finally, applying initial condi-
tions we can obtain the well-known solutions, explicitly de-
rived in the literature �8�.
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C. Duffing equation

This is the classical analog of the quantum mechanical
anharmonic oscillator with cubic nonlinearity. This equation,
as is derived in �9�, has the form

ÿ + y + �y3 = 0, t � 0, y�0� = 1, ẏ�0� = 0, � → 0 + .

�19�

As this problem was fully solved employing �1� in Ref. �5�
we will here illustrate our technique based on �6� and com-
pare with previously obtained results. To this end, expanding
the solution in a power series of � leads to a hierarchy of
equations and the corresponding particular solutions �rela-
tions �72�–�75� of �5��. These terms can be orderly collected
into the secular series expressions while the nonsecular terms
lead to the following form of the asymptotic expansion:

y = Aeit + � 1
8A3e3it + �2�− 21

64A3�A�2e3it + 1
64A5e5it�

+ �3� 417
512A3�A�4e3it − 43

512A5�A�2e5it + 1
512A7e7it� ,

for the amplitude

A = A�1 + � 3
2 i�A�2t − �2� 9

8 t2 + 15
16 it��A�4

+ �3� 45
32 t2 + 123

128 it − 9
16 it3��A�6 + O��4�� , �20�

where the secular series yp is the post factor in the square
brackets to the right-hand side of the above expression. For
this example we carry out the calculation of the amplitude A
as it follows directly from the algebraic equation �6�. Calcu-
lating the cumulants of the sequence �yip�i=1

� from �20� and
substituting into the algebraic relation �6� we obtain

ln A = ln A�0� + it�� 3
2 �A�2 − �2 15

16 �A�4 + �3 123
128 �A�6� + O��4� .

�21�

However, on inverting �20� and calculating its modulus, all
terms up to the fourth order vanish, i.e., A=A�1+O��4��.

Thus substituting into the algebraic relation �21� we obtain

ln A = ln A�0� + it�� 3
2 �A�2 − �2 15

16 �A�4 + �3 123
128 �A�6� + O��4� .

�22�

Reverting to plane-polar coordinates A=Rei� provides the
following pair of algebraic equations for the polar amplitude
and phase:

ln R�t� = ln R�0� + O��4� , �23�

��t� = ��0� + �� 3
2R2 − �2 15

16R4 + �3 123
128R6�t + O��4� ,

�24�

which are identical to the result derived by employing the
transformation �1� in Ref. �5�. Applying initial conditions we
finally obtain well-known solutions explicitly derived in the
literature �8�.

IV. CONCLUDING REMARKS

In our effort to simplify the renormalization group ap-
proach introduced in �2� we derived the amplitude equations
without resorting to the process of elimination of secular
terms. We only considered the secular series known from
solution of the hierarchy of equations. We believe this sim-
plification is close to the message that Ref. �2� wanted to
convey and as such it may provide an additional motivation
for the use of the renormalization group method.
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